Myocyte enhancer factor 2A is transcriptionally autoregulated.
نویسندگان
چکیده
MEF2 (myocyte enhancer factor 2) proteins are a small family of transcription factors that play pivotal roles in striated muscle differentiation, development, and metabolism, in neuron survival and synaptic formation, and in lymphocyte selection and activation. Products of the four mammalian MEF2 genes, MEF2A, MEF2B, MEF2C, and MEF2D, are expressed with overlapping but distinct temporospatial patterns. Toward analysis of MEF2A functions and the determinants of its regulated expression, we have mapped and begun studies of the transcriptional control regions of this gene. Heterogeneous 5'-untranslated regions of MEF2A mRNAs result from use of alternative promoters and splicing patterns. The two closely approximated TATA-less promoters are approximately 65 kb upstream of the exon containing the sole initiation codon. Ribonuclease protection and primer extension assays show that each promoter is active in various adult tissues. A canonical MEF2 site overlies the major promoter 1 transcription start site. This element specifically binds MEF2 factors, including endogenous nuclear MEF2A according to chromatin immunoprecipitation studies, and is critical to MEF2A transcription in myocytes. The site exerts reciprocal control of the alternative promoters, silencing promoter 1 and activating promoter 2 under some conditions. Erk5 and p38 MAPK signaling stimulate MEF2A expression by activating both promoters from the MEF2 element. MEF2A transcription is therefore subject to positive or negative regulation by its protein products, depending on signaling activities that influence MEF2 factor trans-activity. The sole MEF2 gene of the cephalochordate amphioxus has a similar regulatory region structure, suggesting that this mode of autoregulatory control is conserved among higher metazoan MEF2 genes.
منابع مشابه
The Effect of Intensive Endurance Activity on Myocyte Enhancer Factor 2C Gene Expression of Slow and Fast Twitch Muscles in Male Wistar Rats: An Experimental Study
Background and Objectives: Myocyte enhancer factor 2c activates the genes of the slow-twitch muscle, the muscle which plays role in endurance activity. Therefore, the aim of this study was to evaluate the effect of a program of intensive endurance activity on MEF2c gene expression in fast and slow twitch skeletal muscles in wistar rats. Materials and Methods: In this experimental study, 14 mal...
متن کاملInhibition of myocyte-specific enhancer factor 2A improved diabetic cardiac fibrosis partially by regulating endothelial-to-mesenchymal transition
Cardiac fibrosis is an important pathological process of diabetic cardiomyopathy, the underlying mechanism remains elusive. This study sought to identify whether inhibition of Myocyte enhancer factor 2A (MEF2A) alleviates cardiac fibrosis by partially regulating Endothelial-to-mesenchymal transition (EndMT). We induced type 1 diabetes mellitus using the toxin streptozotocin (STZ) in mice and in...
متن کاملMyocyte-specific enhancer factor 2A is essential for zebrafish posterior somite development
Somite development is governed tightly by genetic factors. In the large-scale mutagenesis screens of zebrafish, no mutations were linked to myocyte enhancer factor 2A (MEF2A) locus. In this study, we find that MEF2A knock-down embryos display a downward tail curvature and have U-shaped posterior somites. Furthermore, we demonstrate that MEF2A is required for Hedgehog signaling. MEF2A inhibition...
متن کاملRNA Interference of Myocyte Enhancer Factor 2A Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice
OBJECTIVE Myocyte enhancer factor-2A (MEF 2A) has been shown to be involved in atherosclerotic lesion development, but its role in preexisting lesions is still unclear. In the present study we aim to assess the role of MEF 2A in the progression of pre-existing atherosclerosis. METHODS Eighty apolipoprotein E-deficient mice (APOE KO) were randomly allocated to control, scramble and MEF 2A RNA ...
متن کاملNemo-like kinase-myocyte enhancer factor 2A signaling regulates anterior formation in Xenopus development.
The development of anterior neural structure in Xenopus laevis requires the inhibition of bone morphogenic protein 4 and Wnt signaling. We previously reported that Nemo-like kinase (NLK) negatively regulates Wnt signaling via the phosphorylation of T-cell factor/lymphoid enhancer factor. However, the molecular events occurring downstream of NLK pathways in early neural development remain unclea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 283 16 شماره
صفحات -
تاریخ انتشار 2008